Pearson Edexcel

Mark Scheme (Results)

November 2021

Pearson Edexcel International GCSE

In Physics (4PH1) Paper 2P

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2021
Question Paper Log Number P67162RA
Publications Code 4PH1_2P_2111_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	Observation	Supports the Big Bang theory	2
	Black holes are formed from extremely massive stars		
	Cosmic microwave background radiation is seen in all directions	ns $\quad \checkmark$	
	Cosmic rays from space are detected at the Earth's surface		
	Each galaxy contains billions of stars		
	Most galaxies show a red-shift in the light detected from them	- $\quad \checkmark$	
	1 mark for each correct tick; -1 for each additional tick if more than two ticks seen 5 ticks scores zero		
(b)	B (decreases, increases); A is incorrect because a red giant is more powerful than a main sequence star C is incorrect because a red giant is cooler and more powerful than a main sequence star D is incorrect because a red giant is cooler than a main sequence star		1
(c)	the brightness/luminosity (of an object); idea of a standard distance;	allow 10 parsecs/32(.6) light years condone incorrect distance	2

Total for Question 1 = 5 marks

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 2 (a) \& \begin{tabular}{l}
any two from: \\
MP1. water is renewable/eq; \\
MP2.no fuel / transportation cost; \\
MP3. no air pollution / greenhouse gases; \\
MP4.always available (vs wind/solar);
\end{tabular} \& \begin{tabular}{l}
allow "water is free"/eq \\
allow named pollutant e.g. \(\mathrm{CO}_{2}\) etc. \\
allow "reliable" \\
allow "respond quickly to demand"
\end{tabular} \& 2 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
gravitational (potential energy); \\
C (electrically); \\
A is incorrect because there is no temperature difference \\
\(B\) is incorrect because there are no light or sound waves emitted \\
\(D\) is incorrect because the transfer does not involve forces
\end{tabular} \& \& 1
1 \\
\hline \begin{tabular}{l}
(c) \\
(i) \\
(ii) \\
(iii) \\
(iv)
\end{tabular} \& \begin{tabular}{l}
\[
\text { rate of \{energy transfer / doing work\}; }
\] \\
evaluation of number of seconds in a day; substitution into \(\mathrm{P}=\mathrm{W} \div \mathrm{t}\); evaluation; \\
e.g.
\[
\begin{aligned}
\& 1 \text { day }=(24 \times 60 \times 60=) 86400 \text { seconds } \\
\& (\mathrm{P}=) 9.7 \times 10^{14} \div 86400 \\
\& (\mathrm{P}=) 1.1 \times 10^{10}(\mathrm{~W})
\end{aligned}
\] \\
D (22 \(500000000 \mathrm{~J} / \mathrm{s}\)); \\
A is incorrect because joules is not the unit for power and mega has not been dealt with correctly \\
B is incorrect because mega has not been dealt with correctly \\
C is incorrect because joules is not the unit for power \\
any one from: \\
- idea that electricity demand varies; \\
- idea that water level in reservoir varies; \\
- idea that water may not be available as readily at certain times of the year;
\end{tabular} \& \begin{tabular}{l}
allow alternatives to rate e.g. per second, per unit time etc. \\
seen anywhere in working \\
-1 for POT error \\
allow 1.1226... \(\times 10^{10}(\mathrm{~W})\) allow \(6.7 \times 10^{11} \mathrm{~J} / \mathrm{min}\) or \(4.04 \times 10^{13} \mathrm{~J} / \mathrm{hr}\) if given unit changed. \\
2 marks max. if time unit conversion attempted but incorrect unit e.g. 6.7 x \(10^{11}(\mathrm{~J} / \mathrm{min})\) or \(4.04 \times 10^{13}\) (\(\mathrm{J} / \mathrm{hr}\)) \\
ignore idea of efficiency
\end{tabular} \& 1
3

1
1
1

\hline
\end{tabular}

Total for question 3 = 10 marks

Question number	Answer	Notes	Marks
(a) (i)	mass number = 3; atomic number = 1; (ii)	idea that a (further) neutron is required (for further fission reactions); (but) no neutrons produced (in the fission process);	2
(b)	fission is the splitting of a nucleus; fusion is the joining of two nuclei;	"dividing" for splitting allow "fusing", "combining" for joining	

Total for Question $4=6$ marks

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
5 (a) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
position of the mass hanger; \\
any two from: \\
MP1. weight or mass of metre rule \\
MP2. weight or mass of mass hanger; \\
MP3. positions of newton meter(s); \\
any one from: \\
- take repeats and find mean; \\
- extend the range of the results; \\
- measure more intermediate positions; \\
- repeat to \{identify/remove\} anomalies; \\
- plot a graph to spot anomalies;
\end{tabular} \& allow distance of mass hanger/eq reject unqualified "distance" ignore "same equipment" \& 1
2

1

\hline | (b) |
| :--- |
| (i) |
| (ii) |
| (iii) | \& | all data plotted to within half a small square; |
| :--- |
| straight line passing through all points; |
| any four from: |
| MP1. as position of mass hanger increases, reading on newton meter A decreases; |
| MP2. as position of mass hanger increases, reading on newton meter B increases; |
| MP3. relationship(s) are linear; |
| MP4. idea that newton meter readings are the same when the position is 50 cm ; |
| MP5. idea that the sum of the newton meter readings is constant; | \& | allow straight line with points evenly distributed either side if plotting error in (i) |
| :--- |
| accept "as A decreases, B increases" for MP1 \& MP2 |
| ignore references to proportionality | \& | 1 |
| :--- |
| 1 |
| 4 |

\hline (c) \& | any three from: |
| :--- |
| MP1. idea that clockwise moment equals anticlockwise moment; |
| MP2. distance of mass hanger from newton meter B decreases; |
| MP3. (therefore) anti-clockwise moment of mass hanger weight (about B) decreases; |
| MP4. clockwise moment (of newton meter A reading) decreases (thereby decreasing reading); | \& allow idea that moments must balance allow distance from newton meter A increases \& 3

\hline
\end{tabular}

Question number	Answer	Notes	Marks
6 (a) (i) (ii)	(soft) iron; pass a current in the coil / eq;	condone reference to 'electricity'	1 1
(b) (i)	$\mathrm{N}_{\mathrm{p}} / \mathrm{N}_{\mathrm{s}}=\mathrm{V}_{\mathrm{p}} / \mathrm{V}_{\mathrm{s}}$	allow any correct rearrangement allow "i(nput) and o(utput)" or "1 and 2" for "p(rimary) and s(econdary)" allow correct word equation ignore ' P ' for ' N ' condone ' T ', 't' or ' n ' for ' N ' condone 'coils' for 'turns'	1
(ii)	```substitution; rearrangement; evaluation to 2s.f. or more; e.g. 1500/280=115/V (}\mp@subsup{V}{\textrm{s}}{}=)115\times280/150 (}\mp@subsup{\textrm{V}}{\textrm{s}}{=}=)21(\textrm{V}```	allow 21.4666...(V)	3
(iii)	use of transformer power formula; substitution OR rearrangement; evaluation;	allow use of 20, 21, 21.5 etc. for output voltage allow use of turns ratio i.e. step-down voltage means step-up current	3
	e.g. input power = output power $O R \quad V_{p} I_{p}=V_{s} I_{s}$ $\begin{aligned} & 115 \times 1.2=20 \times \mathrm{I}_{\mathrm{s}} \text { OR } \mathrm{I}_{\mathrm{s}}=\mathrm{V}_{\mathrm{p}} \mathrm{I}_{\mathrm{p}} / \mathrm{V}_{\mathrm{s}} \\ & \left(\mathrm{I}_{\mathrm{s}}=\right) 6.9(\mathrm{~A}) \end{aligned}$	allow 7 (A) allow range of 6.4-6.9	
(iv)	any two from: MP1. increase input voltage/current; MP2. decrease number of turns on secondary coil; MP3. increase number of turns on primary coil;	condone "decrease number of secondary coils" condone "increase number of primary coils"	2

Question number	Answer	Notes	Marks
7 (a)	paint particles are positively charged; paint particles repel/like charges repel; producing a thin / even coat of paint;	ignore statements relating to paint as a whole being attracted to the object allow idea of particles being given same charge condone particles being negatively charged Allow idea that paint particles are attracted to the electrons in the (metal) object allow idea that paint finish is improved allow idea that paint reaches parts that would otherwise be difficult	3
(b)	any three from: MP1. object becomes charged when paint particles land on it; MP2. (without earthing) further paint particles would be repelled by the object as they have the same charge; MP3. earthing discharges object; MP4. electrons transferred between Earth and object; MP5. (earthing means) paint continues to reach object/ giving thicker coat/give even coverage;	allow 'neutralises object' or 'object becomes neutral'	3

Total for question 7 = 6 marks

Question number	Answer	Notes	Marks
8 (a) (i) (ii)	microphone; measure number of squares for a number of complete cycles / waves and find average number of squares for one cycle; multiply number of squares for one cycle by the time base / eq;	condone 'find number of squares for one cycle’ accept 'period' for ‘cycle’ condone use of 'wavelength' for 'period' or 'cycle' ignore reference to $T=$ 1/f	1 2
(b) (i)	```evaluation of time period of wave; substitution into f=1\divT; evaluation of frequency; conclusion consistent with frequency value; e.g. time period = 4 < 10-5 s f=1\div4\times10-5 f=25000(Hz)``` (therefore) sound cannot be heard (since frequency is greater than 20000 Hz)	reject if candidate uses y-axis allow ecf if frequency is incorrect conclusion must be consistent with candidate's frequency value to be awarded the mark	4
(ii)	wave has amplitude of 4 squares; wave has time period of 4 squares; e.g.		2

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

